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MOTIVATION

• Develop Large-Scale Simulation Capability using Unstructured Multigrid Solver

– Large-Eddy Simulation (up to 109 Grid Points)

– Radiation Transport Solver (Diffusion Approximation)

• Implement Combined MPI-OMP Domain Based Parallelization Strategy

– Suitable for Hybrid Shared-Distributed Memory Systems

• Benchmark on Currently Available Architectures

• Evaluate New Architectures as they become Available



OVERVIEW

• Governing Equations, Discretization

• Multigrid Solution Algorithm

– Agglomeration

– Anisotropic

• Combined MPI/OMP Parallelization

• Benchmark Results

– Up to 2048 Processors

– Up to 25 million points, 125 million unknowns



BASE SOLVER

• Governing Equations : Reynolds-Averaged Navier-Stokes

– Conservation of Mass, Momentum, Energy

– Single Equation Turbulence Model (Spalart-Allmaras)

∗ Convection-Diffusion-Production

• Vertex-Based Discretization

– 2nd order upwind finite-volume scheme

– 6 variables per grid point

– Flow equation fully coupled (5× 5)

– Turbulence equation uncoupled



BASE SOLVER

• Mixed Element Grids

– Tetrahedra, Prisms

– Pyramids, Hexahedra

• Edge Data-Structure

– Building Block for All Element Types

– Lower Memory Overheads

– Higher Computational Rates

• Explicit Multi-Stage Time-Stepping (Preconditioned)



CONVERGENCE ACCELERATION

• Agglomeration Multigrid

– Automatic Coarse Level Construction

• Line-Implicit Solver / Jacobi Preconditioning

• Low Mach Number Preconditioning

• Non Linear GMRES (using above solver as a preconditioner)



AGGLOMERATION MULTIGRID

• Principal Convergence Acceleration Ingredient

• Grid Independent Convergence Rates

• Low Memory Overheads

– No Explicit Linearization (FAS)

• Latency Tolerant

– Based on Sequence of Coarse-Fine Grids

– Explicit (or Locally Implicit) Solver on Each Grid Level



AGGLOMERATION MULTIGRID (Non-Linear Problems)

Agglomerated

Seed Point

 Points

• Merge Control Volumes to Form Coarse Levels

– Graph-Based AMG Coarsening

• Transfer between Grid Levels via Piecewise Constants

• Coarse Level Eqns obtained by Summation of Fine Level Eqns

– Algebraic summation of solution independent terms

– Restriction of Solution Dependent Terms (FAS)



ANISOTROPY-INDUCED STIFFNESS

• Convergence Rates for High-Reynolds Number Flows Much Slower

– Mainly Due to Grid Stretching ≈ O(104)

• Standard Techniques for Anisotropic Problems

– Directional (Semi) Coarsening Multigrid

– Directional (Line) Solvers



IMPLICIT LINE PRECONDITIONING

• Graph Algorithm Used to Construct Lines in Regions of High Grid Stretching

• Implicit System Solved Along Lines

• Reduces to Jacobi Preconditioning in Isotropic Regions



NON-LINEAR GMRES ALGORITHM

• Preconditioned Multigrid Algorithm May be Used as Preconditioner to

Non-Linear GMRES

• Potential Speedup in Convergence

• Incurs Additional Memory Overheads (Storage of Search Directions)

– GMRES (20) requires ≈ 50% increase in Memory

• Simple Parallelization Strategy

– Non-Linear Function Evaluations Already Parallelized

– Low Order (20) Least Squares Problem Performed Redundantly on

Each Processor



PARALLEL IMPLEMENTATION

• Domain Decomposition using MPI and/or OpenMP

– Portable, Distributed and Shared Memory Architectures

Communication Path

Partition 
Boundary

Ghost
Vertex

Created Internal Edges

• Weighted Partitioning to Avoid Intersected Line Edges

– CHACO, MeTiS

• Coarse and Fine Multigrid Levels Partitioned Independently



PARTITIONING

• Contract Graph Along Implicit Lines

• Weight Edges and Vertices

V=3

E=3E=2

E=2

• Partition Contracted Graph

• Decontract Graph

– Guarantees Lines Never Broken

– Possible Small Increase in Imbalance/Cut Edges



PARTITIONING EXAMPLE
• 32-Way Partition of 30,562 Point 2D Grid

• Unweighted Partition: 2.6 % Edges Cut, 2.6 % Lines Cut

• Weighted Partition: 3.2 % Edges Cut, 0 % Lines Cut



PARTITIONING FOR MULTIGRID

• Partition Fine Grid Level

• Partition Coarse AMG Level Graphs

• Nested Levels

– Fine Level Partition Could Be Used to Infer Coarse Level Partitions

– Optimizes Inter-Level Communication

• Partition Levels Independently

– Optimize Intra-Level Communication

– Heuristic Procedure to Match Coarse/Fine Level Partitions



PRE-PROCESSING REQUIREMENTS

• Pre-processing Operations

– Construction of Coarse AMG Levels

– Construction of Implicit Lines

– Partitioning of Mesh Levels

• Minimal CPU-Time Requirements

• Memory Requirements Comparable to Flow solver

• Considerable Logic for Parallelization

• Benefits of Shared-Memory Paradigm

– Run Sequentially

– Access Large Amounts of Off-processor memory

• Will Eventually Require Parallelization



SINGLE PROCESSOR OPTIMIZATIONS

• Scalar Microprocessors

– Vertices and Edges Reordered for Locality

– RCM-type algorithm : Factor 2 speedup on Sun Workstation

• Vector Processors

– Vertices Reordered for Locality

– Edges Sorted into Non-Recurrent (vectorizable) Groups

– Line Solves performed in (vector) Groups of 64

• Sample Performance (1 grid level)

– MIPS R10000 (250Mhz): 75 Mflops

– Pentium II (400Mhz): 50 Mflops

– Cray SV1 Vector Processor: 225 Mflops



RELATIVE EXECUTION TIME OF VARIOUS

MICRO-PROCESSORS

• 3D Unstructured Multigrid Algorithm on 177K Grid



PARALLEL PROGRAMMING MODELS

• MPI: Distributed Memory

• OpenMP: Shared Memory

• Mixed Model: Clusters of Shared-Memory Multiprocessors

– Dual CPU Pentium Clusters

– ASCI Machines

• cc-NUMA Architecture (SGI Origin)

– Logically Shared

– Physically Distributed



EXTENDING MPI CODE TO MIXED MPI-OpenMP MODEL

• MPI Process Rewritten to Handle Multiple Domains

– Sequentially

– In Parallel Using OpenMP

• Flexibility

– Run MPI or OpenMP Exclusively

– Run Two-Level MPI-OpenMP Model

– Sequential Capability

∗ Number of Domains can be Multiple of Number of Processors

• Entirely Domain-Based Parallelism



OVERALL CODE STRUCTURE
-

include OMP DIRECTIVE
do : Loop over number of partitions

do : Loop over number of vector groups
do : Loop over edges in a vector group

n1 = edge end(1,iedge)
n2 = edge end(1,iedge)
flux = function of values at n1,n2
residual(n1) = residual(n1) + flux
residual(n2) = residual(n2) - flux

enddo
enddo

enddo
c
include OMP DIRECTIVE
do : Loop over number of partitions

call OMP communicate
enddo
c
include OMP DIRECTIVE
do : Loop over number of partitions

call MPI communicate
enddo

• Entire Code OMP’ed with 2 or 3 Directives

• Distinct Partition Loops (instead of OMP BARRIER) enables

Code to run Sequentially



OPENMP COMMUNICATION (within an MPI Process)

• Arrays Span All Local Partitions/Threads

• Pointers used to Identify Extent of Each Partition/Thread

• Local Indices (relative to pointers) used in Computation Loop

• Global Indices Used for Communication

• Communicate by Copying Selected Values to Specific Locations in Global Array

POINTER TO

G      L      O      B      A      L            A      R      R      A      Y

POINTER TO
PARTITION 1 PARTITION 2

POINTER TO 
PARTITION 3 PARTITION 4

POINTER TO 



COMMUNICATION BETWEEN MPI PROCESSES

• Thread to Thread MPI Messages

– Each Thread Sends to/ Receives from:

∗ An MPI Process

∗ A Thread Id (implemented as message tag)

• Entirely Parallel Provided MPI Implementation is THREAD-SAFE

MPI PROC 1

THREAD 1 THREAD 2 THREAD 3

MPI_RECV

THREAD 1 THREAD 2 THREAD 3

MPI PROC 2

MPI 2  THREAD 1 MPI 1 THREAD 2
MPI_SEND



MIXED MODEL COMMUNICATION

• MPI Communication Reduced by Intra-Process OMP Communication

• Partitions should be Mapped to:

– Maximize Intra-Process OMP Communication

– Minimize Inter-Process MPI Communication

• Output Weighted Communication Graph (between all Partitions)

– Partition Communication Graph Using METIS/CHACO

– Identifies Groupings of Partitions

• METIS Partitions Numbered Naturally for Locality

– Simple Blocked Mapping of Metis Partition Numbering Produces Equivalent

(or Better) Results to Explicit Partitioning of Communication Graph



PARALLEL SCALABILITY RESULTS

• MPI Alone on ASCI Machines, SGI O2K, T3E

• Comparison of MPI versus OpenMP Performance on Shared

Memory Machines: SGI Origin, Cray SV1

• Mixed OpenMP/MPI on SGI Origin, Dual CPU Pentium Cluster

• Effect of Problem Size

– 177,000 Point Problem

– 3 million and 3M × 8 = 24M Point Problems



RAE-WING TEST-CASE
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EXPLICIT FULL COARSENING AMG

DIRECTIONAL IMPLICIT AMG

• 177,837 Vertices (Mixed Hexahedra and Prisms)

• 67 % Fine Grid Points Belong to Lines

• Order of Magnitude Faster than Isotropic Scheme

• Mach = 0.73, Incidence = 2.31 degrees, Reynolds = 6.5 million



FULL AIRCRAFT HIGH-LIFT CONFIGURATION

• Mixed Prismatic-Tetrahedral Mesh

• Fine Mesh: 3.1 million points, 18 million tetrahedra

• Coarse Mesh: 24.7 million points, 145 million tetrahedra



CONVERGENCE HISTORIES

• Coarse Mesh: 4 orders on 600 Multigrid Cycles

• Fine Mesh: Similar to Coarse Mesh

– Grid Independence Property of Multigrid

• Beneficial Effects of GMRES for Coarse Grid

– Insufficient Memory for GMRES on Fine Mesh



RAE WING SCALABILITY RESULTS
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• Good Scalability up Moderate Number of Processors

• Increased Communication for MG Coarse Levels

– Small Problem Size; On 512 Processors:

– Fine Level: 348 points per processor

– Coarse Level: 13 points per processor



3 M POINT SCALABILITY RESULTS
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• Good Scalability up to Maximum Number of Processors

– Larger Problem Size

• Increased Communication for MG Coarse Levels

• MG W-Cycle Always most Efficient Overall



SCALABILITY OF 3M POINT AIRCRAFT CASE
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ASCI Blue Pacific (IBM 332 Mhz)
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ASCI Red (Pentium Pro 333 Mhz)

• ASCI Blue: Good Scalability up to 256 Processors

• ASCI Red: Good Scalability up to 2048 Processors

• Scalability Improves for Larger Problems

• Increased Communication for MG Coarse Levels

• Coarsest Grid = 1651 Points



SCALABILITY OF 3M POINT AIRCRAFT CASE
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ASCI Blue Pacific (IBM 332 Mhz)
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ASCI Blue Pacific (IBM 332 Mhz)

• ASCI Blue: Good Scalability up to 256 Processors

• Slight Degradation due to 4 Shared Memory PEs



SCALABILITY OF 25M PT AIRCRAFT CASE ON T3E-1200E
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• Dec Alpha 600 Mhz Processors

• Good Multigrid Scalability up to 1450 PEs

• Coarsest Grid = 2208 Points

• 82 Gflops on 1450 PEs (estimated)



ICASE BEOWULF PC CLUSTER

• 32 Pentium II (400Mhz), 8 Gbytes Aggregate RAM

• Fast Ethernet Interconnect

• Total Cost: $50,000

• Scalability of 3D Unstructured Multigrid Algorithm on 177K Grid

• ≈ 1.5 Gflops on Large Unstructured Problems



SAMPLE TURNAROUND TIMES

• 3 Million Point Aircraft on ASCI Red (1024 Processors)

– 21 minutes for 500 Multigrid Cycles

• 25 Million Point Aircraft on T3E-1200E (1450 Processors)

– 63 minutes for 500 Multigrid Cycles

– 29 minutes for I/O

– 9 Gbyte Input File

• Possibility of running over 100 Million Grid Points

• Bottlenecks to be Addressed:

– Sequential Preprocessing

– File I/O, Network File Transfer



COMPARISON OF MPI and OPENMP on CRAY SV1
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• Vector Machine with Uniform Access Memory

• Two Vendor MPI Implementations

– MPI -np : Unix Sockets

– MPI -nt : Shared Memory Communication

• 177K Point Grid, No Multigrid



MPI vs. OPENMP ON SINGLE BOX OF ASCI BLUE MOUNTAIN
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• OMP Uses Parallel Initialization (first touch memory placement)

• 3.1 million Point Grid, No Multigrid



ISSUES AFFECTING PERFORMANCE

• Memory and Processor Placement on SGI Origin

– Used NASA-SGI Tools for Placement

∗ LIBNUMA: mmci, proc, refcnt, mld, mldset, pm, pminfo, numa

– Requested Processor Placement Not Guaranteed

– Minimum Memory Placement Page Size

– Exact Memory Boundaries Cannot Be Prescribed

• Cray SV1 Architecture

– Physically Shared Memory Architecture

– Placement not an Issue

– MPI Performance Dependent on Vendor Implementation



ISSUES AFFECTING PERFORMANCE

• Superlinear:

– Based on Single CPU Speed

– 5 Gbytes of Memory Required

– Off-Processor Memory Access

• Processor Placement Important

– OS Processor Placement for 8 CPU RUN: 86.9 secs/cycle

– Explicit Processor Placement for 8 CPU RUN: 60.3 secs/cycle

∗ 1 Thread per Memory Node

– MPI using OS Processor Placement : 61.6 secs/cycle



COMBINED MPI-OpenMP ON ASCI BLUE MOUNTAIN
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• 3.1 million Point Grid, No Multigrid



MPI/OpenMP PERFORMANCE

• OpenMP and MPI Perform Equivalently on SV1, O2000

– Validates OMP Implementation

• Combined MPI-OMP Cases Show Degradation

– Current Origin 2000 MPI Implementation NOT Completely THREAD-SAFE

∗ Individual Thread MPI Calls are Sequentialized

∗ Degradation Increases with Number of Threads

∗ Acceptable for Small Numbers of Threads : Dual CPU Pentiums

• Requested Processor Map Not Always Held

– Initialized Memory No Longer Local

– Processes Double up On Single Processor (MPI 64, OMP 2)



MULTI-BOX PERFORMANCE ON ASCI BLUE MOUNTAIN
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• MPI Alone

• Improved Performance for Larger Problem

• Reasonable Scalability with Problem Size



EFFECT OF THE NUMBER OF BOXES (MPI ALONE)
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• Performance Improves Slightly with More Boxes

• Intra-Box Communication is Bottleneck

• Difficulty Maintaining Shared Mem Processor Map



MIXED OMP-MPI ON MULTIPLE BOXES
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• Difficulty Maintaining Shared Mem Processor Map

• MPI Not Entirely THREAD-SAFE



CONCLUSIONS

• Current Code Supports Scalar and Vector, MPI and OpenMP

• Best Scalability Obtained on ASCI Red, T3E Machines

• Best Scalability Obtained with MPI Alone

(even on clustered SMPs)

• OMP and MPI Equivalent on Truly Shared Memory Machines

• OMP and MPI Equivalent on NUMA Machines Provided Mem-

ory is Initialized Accordingly and Processes do not Migrate

• Good Combined MPI-OMP Performance Requires:

– 100 % THREAD-SAFE MPI

– Ability to Explicitly Map Memory and Processes


